SEC. 13–9/SHEAR AND MOMENT FORMULAS

TABLE 13–1 Shear and Moment Formulas for Some Simple Loadings

473

TABLE 15–2 Allowable Stresses for Timber

				Compre	ssion
Species	Extreme Fiber in Bending psi (kPa)	Tension Parallel to Grain psi (kPa)	Longi- tudinal Shear psi (kPa)	Perpen- dicular to Grain psi (kPa)	Parallel to Grain psi (kPa)
Douglas fir	1450	625	95	385	1050
Eastern hemlock	(10 000) 1350 (9310)	(4310) 925 (6380)	(660) 80 (550)	(2650) 360 (2480)	(7240) 950 (6550)
Southern pine	1600	825	90	410	1250
Ponderosa pine	(11000) 1100 (7580)	(5690) 725 (5000)	(620) 65 (450)	(2830) 235 (1620)	(8620) 750 (5170)
California redwood	1350 (9310)	650 (4480)	100 (690)	270 (1860)	1050 (7240)

Beam Loading and Deflection	Maximum Deflection	Slope at End(s)	Deflection Equations
$A = \begin{bmatrix} P & \delta_{\max} \\ B & A \\ \hline & & B \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & &$	$\delta_{\max} = \frac{PL^3}{3EI}$	$\theta_B = \frac{PL^2}{2EI}$	$\delta = \frac{P\mathbf{x}^2}{6EI}(3L - \mathbf{x})$
$\begin{array}{c} 2 & & P \\ A & & C \\ A & & C \\ A & & B \\ A & & $	$\delta_{\max} = \frac{P\alpha^2}{6EI}(3L - \alpha)$	$\theta_B = \frac{P\alpha^2}{2EI}$	$\delta_{AC} = \frac{Px^2}{6EI}(3\alpha - x)$ $\delta_{CB} = \frac{P\alpha^2}{6EI}(3x - \alpha)$
$\begin{array}{c} 3 \\ A \\ \downarrow \\ \downarrow \\ L \\ \downarrow \\ L \\ \downarrow \\ H \\ H$	$\delta_{ m max} = rac{wL^4}{8EI}$	$\theta_B = \frac{wL^3}{6EI}$	$\delta = \frac{\mathbf{w}\mathbf{x}^2}{24EI}(\mathbf{x}^2 - 4L\mathbf{x} + 6L^2)$
$A = \begin{bmatrix} M \\ B \\ \downarrow \\ L \\ \downarrow \\ H \\ H$	$\delta_{\max} = \frac{ML^2}{2EI}$	$\theta_{B} = \frac{ML}{EI}$	$\delta = \frac{Mx^2}{2EI}$
$5 \xrightarrow{L} \xrightarrow{P} C$	$\delta_{\max} = \frac{PL^3}{48EI}$	$\theta_{\rm A} = \theta_{\rm B} = \frac{PL^2}{16EI}$	$\delta_{AC} = \frac{P\mathbf{x}}{48EI}(3L^2 - 4\mathbf{x}^2)$
$\begin{array}{c} 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	For $\alpha > b$: $\delta_{\max} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}EIL}$ $\alpha t x_m = \sqrt{\frac{L^2 - b^2}{3}}$	$\theta_{A} = \frac{Pb(L^{2} - b^{2})}{6EIL}$ $\theta_{B} = \frac{P\alpha(L^{2} - \alpha^{2})}{6EIL}$	$\begin{split} \delta_{AC} &= \frac{Pbx}{6EIL}(L^2 - x^2 - b^2) \\ \delta_{CB} &= \frac{Pb}{6EIL} \bigg[\frac{L}{b} (x - \alpha)^3 \\ &+ (L^2 - b^2) x - x^3 \bigg] \end{split}$
$\begin{array}{c} 7 & w \\ A & 7 & 7 & 7 \\ A & 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7$	$\delta_{\max} = \frac{5wL^4}{384EI}$	$ heta_{A}= heta_{B}=rac{\mathbf{w}L^{3}}{24EI}$	$\delta = \frac{\mathbf{w}\mathbf{x}}{24EI}(L^3 + \mathbf{x}^3 - 2L\mathbf{x}^2)$
$\begin{array}{c c} 8 & & & \\ A & $	$\delta_{\max} = \frac{ML^2}{9\sqrt{3}EI}$ at $\mathbf{x}_m = \frac{L}{\sqrt{3}}$	$ heta_{A}=rac{ML}{6EI}$ $ heta_{B}=rac{ML}{3EI}$	$\delta = \frac{M\mathbf{x}}{6EIL}(L^2 - \mathbf{x}^2)$

TABLE 16–1 Beam Deflection Formulas

Type of Load	Type of Stress	Formula	Equation Number
Axial load	Direct normal stress	$\sigma = \frac{P}{A}$	(9–1)
Internal pressure in thin-walled vessels	Circumferential stress	$\sigma_{c} = \frac{Pr_{i}}{t}$	(9–16)
	Longitudinal stress	$\sigma_l = \frac{\Pr_i}{2t}$	(9–17)
Beam bending load	Flexural stress	$\sigma = \frac{My}{I}$	(14–3)
		$\sigma_{\rm max} = \frac{Mc}{I}$	(14–2)
		$\sigma_{\rm max} = \frac{M}{S}$	(14–7)
Direct shear load	Direct shear stress	$\tau_{avg} = \frac{P}{A}$	(9–4)
Torque in circular shaft	Torsional shear stress	$\tau = \frac{T\rho}{J}$	(12-2)
		$\tau_{\rm max} = \frac{Tc}{J}$	(12–1)
Beam shear force	Beam shear stress	$\tau = \frac{VQ}{It}$	(14–10)
	Maximum shear stress in rectangular section	$\tau_{\rm max} = 1.5 \frac{V}{A}$	(14–11)
	Maximum shear stress in circular section	$\tau_{\rm max} = \frac{4V}{3A}$	(14–12)

TABLE 18–1 Lis	t of the	e Fundαment	tal Formulas
----------------	----------	-------------	--------------

18–2 COMBINED AXIAL AND BENDING STRESSES

Many structural and machine members are subjected to axial forces and bending moments exerted simultaneously. Both produce normal stresses along the longitudinal directions. The normal stresses due to each load can be calculated separately and added algebraically to find the combined stresses, as illustrated in the following two examples.

- EXAMPLE 18-1 -

Refer to Fig. E18–1(1). The wide-flange shape W360 \times 0.99 is used as a simple beam of 3-m span. The beam is subjected to a uniform load *w* of 100 kN/m (including the weight of the beam) and an axial tensile force *P* of 500 kN. Determine the normal stresses at points *A* and *B*, and plot the normal stress variation between *A* and *B*.